Find an academic paper published in 2020 or later

Find an academic paper published in 2020 or later (based on online or print publication date) discussing a real-life application of data mining or credit scoring.

Find an academic paper published in 2020 or later
Assignment Question

Question 1:

The dataset ‘Credit data.xlsx’ contains data on 10,000 borrowers and whether they subsequently experienced serious delinquency (see variable ‘SeriousDlqin2yrs’). Assume the lender now wishes to use this data to build a credit scoring model that predicts serious delinquency based on the other variables. The dataset contains the following variables:

1.1 Carefully pre-process the dataset by considering the following activities:

Exploratory data analysis.

Missing value handling (if any), including a suitable analysis of missing values and justification of the chosen method.

Outlier detection and treatment (if any), with appropriate analysis/justification.

Binning the variables (if deemed useful)

Coding the variable bins using Weights of Evidence

. • Splitting the data set into a training and test set.

1.2 Build an intuitive and predictive scorecard using a logistic regression classifier and report the following:

The most important variables

The impact of the variables on the target

The performance of the model. Use various performance metrics and discuss their relationship if any.

Compare this scorecard with the result of a Random Forest model run over the data. Discuss your results. Why do banks often use Logistic Regression as their classifier? What do banks win and lose by doing this? In terms of software, you are expected to use SAS Enterprise Miner. Carefully report the various steps of your methodology and discuss your results in a rigorous way! NOTE: It is unlikely that different students will come up with the exact same parameter estimates. Special consideration will be given to submissions whose estimates are identical.

Question 2:
Find an academic paper published in 2020 or later (based on online or print publication date) discussing a real-life application of data mining or credit scoring. It is important that the dataset analysed in the paper consists of real-life (not artificial) data. The suggested publication outlets in which to look for a suitable paper are:

Management Science •
Operations Research •

INFORMS Journal on Computing

Firstly, INFORMS Journal on Applied Analytics

Secondly, Journal of Machine Learning Research

European Journal of Operational Research

Thirdly ICDM (The IEEE International Conference on Data Mining)

Further, NeurlPS (Conference on Neural Information Processing Systems)

Finally, KDD (ACM SIGKDD Conference on Knowledge Discovery and Data Mining)

Note: if you would decide to select a paper from elsewhere, please ensure that it is of sufficiently high quality and makes a novel contribution to the area.

Once you have found an appropriate paper, report the following in separate subsections:
Title, authors and complete citation (e.g. journal name, volume/issue, year, …)

The data mining problem considered

The data mining techniques used

The results reported

A critical discussion of the model and results (assumptions made, shortcomings, limitations, …).

Make sure you demonstrate that you understand what the article is all about and are able to provide a critical discussion.

Do not copy and paste from the article. Using Turnitin, this will be easily detected!

Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
The price is based on these factors:
Academic level
Number of pages
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our Guarantees

Money-back Guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism Guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision Policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy Policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation Guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more